(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a__p(0) → 0
a__p(s(X)) → mark(X)
a__leq(0, Y) → true
a__leq(s(X), 0) → false
a__leq(s(X), s(Y)) → a__leq(mark(X), mark(Y))
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
a__diff(X, Y) → a__if(a__leq(mark(X), mark(Y)), 0, s(diff(p(X), Y)))
mark(p(X)) → a__p(mark(X))
mark(leq(X1, X2)) → a__leq(mark(X1), mark(X2))
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(diff(X1, X2)) → a__diff(mark(X1), mark(X2))
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__p(X) → p(X)
a__leq(X1, X2) → leq(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
a__diff(X1, X2) → diff(X1, X2)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
a__p(0') → 0'
a__p(s(X)) → mark(X)
a__leq(0', Y) → true
a__leq(s(X), 0') → false
a__leq(s(X), s(Y)) → a__leq(mark(X), mark(Y))
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
a__diff(X, Y) → a__if(a__leq(mark(X), mark(Y)), 0', s(diff(p(X), Y)))
mark(p(X)) → a__p(mark(X))
mark(leq(X1, X2)) → a__leq(mark(X1), mark(X2))
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(diff(X1, X2)) → a__diff(mark(X1), mark(X2))
mark(0') → 0'
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__p(X) → p(X)
a__leq(X1, X2) → leq(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
a__diff(X1, X2) → diff(X1, X2)
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
a__p(0') → 0'
a__p(s(X)) → mark(X)
a__leq(0', Y) → true
a__leq(s(X), 0') → false
a__leq(s(X), s(Y)) → a__leq(mark(X), mark(Y))
a__if(true, X, Y) → mark(X)
a__if(false, X, Y) → mark(Y)
a__diff(X, Y) → a__if(a__leq(mark(X), mark(Y)), 0', s(diff(p(X), Y)))
mark(p(X)) → a__p(mark(X))
mark(leq(X1, X2)) → a__leq(mark(X1), mark(X2))
mark(if(X1, X2, X3)) → a__if(mark(X1), X2, X3)
mark(diff(X1, X2)) → a__diff(mark(X1), mark(X2))
mark(0') → 0'
mark(s(X)) → s(mark(X))
mark(true) → true
mark(false) → false
a__p(X) → p(X)
a__leq(X1, X2) → leq(X1, X2)
a__if(X1, X2, X3) → if(X1, X2, X3)
a__diff(X1, X2) → diff(X1, X2)
Types:
a__p :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
0' :: 0':s:true:false:p:diff:leq:if
s :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
mark :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
a__leq :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
true :: 0':s:true:false:p:diff:leq:if
false :: 0':s:true:false:p:diff:leq:if
a__if :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
a__diff :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
diff :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
p :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
leq :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
if :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
hole_0':s:true:false:p:diff:leq:if1_0 :: 0':s:true:false:p:diff:leq:if
gen_0':s:true:false:p:diff:leq:if2_0 :: Nat → 0':s:true:false:p:diff:leq:if
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
a__p,
mark,
a__leq,
a__ifThey will be analysed ascendingly in the following order:
a__p = mark
a__p = a__leq
a__p = a__if
mark = a__leq
mark = a__if
a__leq = a__if
(6) Obligation:
Innermost TRS:
Rules:
a__p(
0') →
0'a__p(
s(
X)) →
mark(
X)
a__leq(
0',
Y) →
truea__leq(
s(
X),
0') →
falsea__leq(
s(
X),
s(
Y)) →
a__leq(
mark(
X),
mark(
Y))
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
a__diff(
X,
Y) →
a__if(
a__leq(
mark(
X),
mark(
Y)),
0',
s(
diff(
p(
X),
Y)))
mark(
p(
X)) →
a__p(
mark(
X))
mark(
leq(
X1,
X2)) →
a__leq(
mark(
X1),
mark(
X2))
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
X2,
X3)
mark(
diff(
X1,
X2)) →
a__diff(
mark(
X1),
mark(
X2))
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
mark(
true) →
truemark(
false) →
falsea__p(
X) →
p(
X)
a__leq(
X1,
X2) →
leq(
X1,
X2)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
a__diff(
X1,
X2) →
diff(
X1,
X2)
Types:
a__p :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
0' :: 0':s:true:false:p:diff:leq:if
s :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
mark :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
a__leq :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
true :: 0':s:true:false:p:diff:leq:if
false :: 0':s:true:false:p:diff:leq:if
a__if :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
a__diff :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
diff :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
p :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
leq :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
if :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
hole_0':s:true:false:p:diff:leq:if1_0 :: 0':s:true:false:p:diff:leq:if
gen_0':s:true:false:p:diff:leq:if2_0 :: Nat → 0':s:true:false:p:diff:leq:if
Generator Equations:
gen_0':s:true:false:p:diff:leq:if2_0(0) ⇔ 0'
gen_0':s:true:false:p:diff:leq:if2_0(+(x, 1)) ⇔ s(gen_0':s:true:false:p:diff:leq:if2_0(x))
The following defined symbols remain to be analysed:
mark, a__p, a__leq, a__if
They will be analysed ascendingly in the following order:
a__p = mark
a__p = a__leq
a__p = a__if
mark = a__leq
mark = a__if
a__leq = a__if
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
mark(
gen_0':s:true:false:p:diff:leq:if2_0(
n4_0)) →
gen_0':s:true:false:p:diff:leq:if2_0(
n4_0), rt ∈ Ω(1 + n4
0)
Induction Base:
mark(gen_0':s:true:false:p:diff:leq:if2_0(0)) →RΩ(1)
0'
Induction Step:
mark(gen_0':s:true:false:p:diff:leq:if2_0(+(n4_0, 1))) →RΩ(1)
s(mark(gen_0':s:true:false:p:diff:leq:if2_0(n4_0))) →IH
s(gen_0':s:true:false:p:diff:leq:if2_0(c5_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
a__p(
0') →
0'a__p(
s(
X)) →
mark(
X)
a__leq(
0',
Y) →
truea__leq(
s(
X),
0') →
falsea__leq(
s(
X),
s(
Y)) →
a__leq(
mark(
X),
mark(
Y))
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
a__diff(
X,
Y) →
a__if(
a__leq(
mark(
X),
mark(
Y)),
0',
s(
diff(
p(
X),
Y)))
mark(
p(
X)) →
a__p(
mark(
X))
mark(
leq(
X1,
X2)) →
a__leq(
mark(
X1),
mark(
X2))
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
X2,
X3)
mark(
diff(
X1,
X2)) →
a__diff(
mark(
X1),
mark(
X2))
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
mark(
true) →
truemark(
false) →
falsea__p(
X) →
p(
X)
a__leq(
X1,
X2) →
leq(
X1,
X2)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
a__diff(
X1,
X2) →
diff(
X1,
X2)
Types:
a__p :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
0' :: 0':s:true:false:p:diff:leq:if
s :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
mark :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
a__leq :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
true :: 0':s:true:false:p:diff:leq:if
false :: 0':s:true:false:p:diff:leq:if
a__if :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
a__diff :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
diff :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
p :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
leq :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
if :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
hole_0':s:true:false:p:diff:leq:if1_0 :: 0':s:true:false:p:diff:leq:if
gen_0':s:true:false:p:diff:leq:if2_0 :: Nat → 0':s:true:false:p:diff:leq:if
Lemmas:
mark(gen_0':s:true:false:p:diff:leq:if2_0(n4_0)) → gen_0':s:true:false:p:diff:leq:if2_0(n4_0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s:true:false:p:diff:leq:if2_0(0) ⇔ 0'
gen_0':s:true:false:p:diff:leq:if2_0(+(x, 1)) ⇔ s(gen_0':s:true:false:p:diff:leq:if2_0(x))
The following defined symbols remain to be analysed:
a__p, a__leq, a__if
They will be analysed ascendingly in the following order:
a__p = mark
a__p = a__leq
a__p = a__if
mark = a__leq
mark = a__if
a__leq = a__if
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__p.
(11) Obligation:
Innermost TRS:
Rules:
a__p(
0') →
0'a__p(
s(
X)) →
mark(
X)
a__leq(
0',
Y) →
truea__leq(
s(
X),
0') →
falsea__leq(
s(
X),
s(
Y)) →
a__leq(
mark(
X),
mark(
Y))
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
a__diff(
X,
Y) →
a__if(
a__leq(
mark(
X),
mark(
Y)),
0',
s(
diff(
p(
X),
Y)))
mark(
p(
X)) →
a__p(
mark(
X))
mark(
leq(
X1,
X2)) →
a__leq(
mark(
X1),
mark(
X2))
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
X2,
X3)
mark(
diff(
X1,
X2)) →
a__diff(
mark(
X1),
mark(
X2))
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
mark(
true) →
truemark(
false) →
falsea__p(
X) →
p(
X)
a__leq(
X1,
X2) →
leq(
X1,
X2)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
a__diff(
X1,
X2) →
diff(
X1,
X2)
Types:
a__p :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
0' :: 0':s:true:false:p:diff:leq:if
s :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
mark :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
a__leq :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
true :: 0':s:true:false:p:diff:leq:if
false :: 0':s:true:false:p:diff:leq:if
a__if :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
a__diff :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
diff :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
p :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
leq :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
if :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
hole_0':s:true:false:p:diff:leq:if1_0 :: 0':s:true:false:p:diff:leq:if
gen_0':s:true:false:p:diff:leq:if2_0 :: Nat → 0':s:true:false:p:diff:leq:if
Lemmas:
mark(gen_0':s:true:false:p:diff:leq:if2_0(n4_0)) → gen_0':s:true:false:p:diff:leq:if2_0(n4_0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s:true:false:p:diff:leq:if2_0(0) ⇔ 0'
gen_0':s:true:false:p:diff:leq:if2_0(+(x, 1)) ⇔ s(gen_0':s:true:false:p:diff:leq:if2_0(x))
The following defined symbols remain to be analysed:
a__leq, a__if
They will be analysed ascendingly in the following order:
a__p = mark
a__p = a__leq
a__p = a__if
mark = a__leq
mark = a__if
a__leq = a__if
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
a__leq(
gen_0':s:true:false:p:diff:leq:if2_0(
n1529_0),
gen_0':s:true:false:p:diff:leq:if2_0(
n1529_0)) →
true, rt ∈ Ω(1 + n1529
0 + n1529
02)
Induction Base:
a__leq(gen_0':s:true:false:p:diff:leq:if2_0(0), gen_0':s:true:false:p:diff:leq:if2_0(0)) →RΩ(1)
true
Induction Step:
a__leq(gen_0':s:true:false:p:diff:leq:if2_0(+(n1529_0, 1)), gen_0':s:true:false:p:diff:leq:if2_0(+(n1529_0, 1))) →RΩ(1)
a__leq(mark(gen_0':s:true:false:p:diff:leq:if2_0(n1529_0)), mark(gen_0':s:true:false:p:diff:leq:if2_0(n1529_0))) →LΩ(1 + n15290)
a__leq(gen_0':s:true:false:p:diff:leq:if2_0(n1529_0), mark(gen_0':s:true:false:p:diff:leq:if2_0(n1529_0))) →LΩ(1 + n15290)
a__leq(gen_0':s:true:false:p:diff:leq:if2_0(n1529_0), gen_0':s:true:false:p:diff:leq:if2_0(n1529_0)) →IH
true
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(13) Complex Obligation (BEST)
(14) Obligation:
Innermost TRS:
Rules:
a__p(
0') →
0'a__p(
s(
X)) →
mark(
X)
a__leq(
0',
Y) →
truea__leq(
s(
X),
0') →
falsea__leq(
s(
X),
s(
Y)) →
a__leq(
mark(
X),
mark(
Y))
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
a__diff(
X,
Y) →
a__if(
a__leq(
mark(
X),
mark(
Y)),
0',
s(
diff(
p(
X),
Y)))
mark(
p(
X)) →
a__p(
mark(
X))
mark(
leq(
X1,
X2)) →
a__leq(
mark(
X1),
mark(
X2))
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
X2,
X3)
mark(
diff(
X1,
X2)) →
a__diff(
mark(
X1),
mark(
X2))
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
mark(
true) →
truemark(
false) →
falsea__p(
X) →
p(
X)
a__leq(
X1,
X2) →
leq(
X1,
X2)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
a__diff(
X1,
X2) →
diff(
X1,
X2)
Types:
a__p :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
0' :: 0':s:true:false:p:diff:leq:if
s :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
mark :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
a__leq :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
true :: 0':s:true:false:p:diff:leq:if
false :: 0':s:true:false:p:diff:leq:if
a__if :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
a__diff :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
diff :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
p :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
leq :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
if :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
hole_0':s:true:false:p:diff:leq:if1_0 :: 0':s:true:false:p:diff:leq:if
gen_0':s:true:false:p:diff:leq:if2_0 :: Nat → 0':s:true:false:p:diff:leq:if
Lemmas:
mark(gen_0':s:true:false:p:diff:leq:if2_0(n4_0)) → gen_0':s:true:false:p:diff:leq:if2_0(n4_0), rt ∈ Ω(1 + n40)
a__leq(gen_0':s:true:false:p:diff:leq:if2_0(n1529_0), gen_0':s:true:false:p:diff:leq:if2_0(n1529_0)) → true, rt ∈ Ω(1 + n15290 + n152902)
Generator Equations:
gen_0':s:true:false:p:diff:leq:if2_0(0) ⇔ 0'
gen_0':s:true:false:p:diff:leq:if2_0(+(x, 1)) ⇔ s(gen_0':s:true:false:p:diff:leq:if2_0(x))
The following defined symbols remain to be analysed:
a__if, a__p, mark
They will be analysed ascendingly in the following order:
a__p = mark
a__p = a__leq
a__p = a__if
mark = a__leq
mark = a__if
a__leq = a__if
(15) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__if.
(16) Obligation:
Innermost TRS:
Rules:
a__p(
0') →
0'a__p(
s(
X)) →
mark(
X)
a__leq(
0',
Y) →
truea__leq(
s(
X),
0') →
falsea__leq(
s(
X),
s(
Y)) →
a__leq(
mark(
X),
mark(
Y))
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
a__diff(
X,
Y) →
a__if(
a__leq(
mark(
X),
mark(
Y)),
0',
s(
diff(
p(
X),
Y)))
mark(
p(
X)) →
a__p(
mark(
X))
mark(
leq(
X1,
X2)) →
a__leq(
mark(
X1),
mark(
X2))
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
X2,
X3)
mark(
diff(
X1,
X2)) →
a__diff(
mark(
X1),
mark(
X2))
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
mark(
true) →
truemark(
false) →
falsea__p(
X) →
p(
X)
a__leq(
X1,
X2) →
leq(
X1,
X2)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
a__diff(
X1,
X2) →
diff(
X1,
X2)
Types:
a__p :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
0' :: 0':s:true:false:p:diff:leq:if
s :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
mark :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
a__leq :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
true :: 0':s:true:false:p:diff:leq:if
false :: 0':s:true:false:p:diff:leq:if
a__if :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
a__diff :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
diff :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
p :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
leq :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
if :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
hole_0':s:true:false:p:diff:leq:if1_0 :: 0':s:true:false:p:diff:leq:if
gen_0':s:true:false:p:diff:leq:if2_0 :: Nat → 0':s:true:false:p:diff:leq:if
Lemmas:
mark(gen_0':s:true:false:p:diff:leq:if2_0(n4_0)) → gen_0':s:true:false:p:diff:leq:if2_0(n4_0), rt ∈ Ω(1 + n40)
a__leq(gen_0':s:true:false:p:diff:leq:if2_0(n1529_0), gen_0':s:true:false:p:diff:leq:if2_0(n1529_0)) → true, rt ∈ Ω(1 + n15290 + n152902)
Generator Equations:
gen_0':s:true:false:p:diff:leq:if2_0(0) ⇔ 0'
gen_0':s:true:false:p:diff:leq:if2_0(+(x, 1)) ⇔ s(gen_0':s:true:false:p:diff:leq:if2_0(x))
The following defined symbols remain to be analysed:
mark, a__p
They will be analysed ascendingly in the following order:
a__p = mark
a__p = a__leq
a__p = a__if
mark = a__leq
mark = a__if
a__leq = a__if
(17) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
mark(
gen_0':s:true:false:p:diff:leq:if2_0(
n2407_0)) →
gen_0':s:true:false:p:diff:leq:if2_0(
n2407_0), rt ∈ Ω(1 + n2407
0)
Induction Base:
mark(gen_0':s:true:false:p:diff:leq:if2_0(0)) →RΩ(1)
0'
Induction Step:
mark(gen_0':s:true:false:p:diff:leq:if2_0(+(n2407_0, 1))) →RΩ(1)
s(mark(gen_0':s:true:false:p:diff:leq:if2_0(n2407_0))) →IH
s(gen_0':s:true:false:p:diff:leq:if2_0(c2408_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(18) Complex Obligation (BEST)
(19) Obligation:
Innermost TRS:
Rules:
a__p(
0') →
0'a__p(
s(
X)) →
mark(
X)
a__leq(
0',
Y) →
truea__leq(
s(
X),
0') →
falsea__leq(
s(
X),
s(
Y)) →
a__leq(
mark(
X),
mark(
Y))
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
a__diff(
X,
Y) →
a__if(
a__leq(
mark(
X),
mark(
Y)),
0',
s(
diff(
p(
X),
Y)))
mark(
p(
X)) →
a__p(
mark(
X))
mark(
leq(
X1,
X2)) →
a__leq(
mark(
X1),
mark(
X2))
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
X2,
X3)
mark(
diff(
X1,
X2)) →
a__diff(
mark(
X1),
mark(
X2))
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
mark(
true) →
truemark(
false) →
falsea__p(
X) →
p(
X)
a__leq(
X1,
X2) →
leq(
X1,
X2)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
a__diff(
X1,
X2) →
diff(
X1,
X2)
Types:
a__p :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
0' :: 0':s:true:false:p:diff:leq:if
s :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
mark :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
a__leq :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
true :: 0':s:true:false:p:diff:leq:if
false :: 0':s:true:false:p:diff:leq:if
a__if :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
a__diff :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
diff :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
p :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
leq :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
if :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
hole_0':s:true:false:p:diff:leq:if1_0 :: 0':s:true:false:p:diff:leq:if
gen_0':s:true:false:p:diff:leq:if2_0 :: Nat → 0':s:true:false:p:diff:leq:if
Lemmas:
mark(gen_0':s:true:false:p:diff:leq:if2_0(n2407_0)) → gen_0':s:true:false:p:diff:leq:if2_0(n2407_0), rt ∈ Ω(1 + n24070)
a__leq(gen_0':s:true:false:p:diff:leq:if2_0(n1529_0), gen_0':s:true:false:p:diff:leq:if2_0(n1529_0)) → true, rt ∈ Ω(1 + n15290 + n152902)
Generator Equations:
gen_0':s:true:false:p:diff:leq:if2_0(0) ⇔ 0'
gen_0':s:true:false:p:diff:leq:if2_0(+(x, 1)) ⇔ s(gen_0':s:true:false:p:diff:leq:if2_0(x))
The following defined symbols remain to be analysed:
a__p
They will be analysed ascendingly in the following order:
a__p = mark
a__p = a__leq
a__p = a__if
mark = a__leq
mark = a__if
a__leq = a__if
(20) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__p.
(21) Obligation:
Innermost TRS:
Rules:
a__p(
0') →
0'a__p(
s(
X)) →
mark(
X)
a__leq(
0',
Y) →
truea__leq(
s(
X),
0') →
falsea__leq(
s(
X),
s(
Y)) →
a__leq(
mark(
X),
mark(
Y))
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
a__diff(
X,
Y) →
a__if(
a__leq(
mark(
X),
mark(
Y)),
0',
s(
diff(
p(
X),
Y)))
mark(
p(
X)) →
a__p(
mark(
X))
mark(
leq(
X1,
X2)) →
a__leq(
mark(
X1),
mark(
X2))
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
X2,
X3)
mark(
diff(
X1,
X2)) →
a__diff(
mark(
X1),
mark(
X2))
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
mark(
true) →
truemark(
false) →
falsea__p(
X) →
p(
X)
a__leq(
X1,
X2) →
leq(
X1,
X2)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
a__diff(
X1,
X2) →
diff(
X1,
X2)
Types:
a__p :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
0' :: 0':s:true:false:p:diff:leq:if
s :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
mark :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
a__leq :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
true :: 0':s:true:false:p:diff:leq:if
false :: 0':s:true:false:p:diff:leq:if
a__if :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
a__diff :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
diff :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
p :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
leq :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
if :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
hole_0':s:true:false:p:diff:leq:if1_0 :: 0':s:true:false:p:diff:leq:if
gen_0':s:true:false:p:diff:leq:if2_0 :: Nat → 0':s:true:false:p:diff:leq:if
Lemmas:
mark(gen_0':s:true:false:p:diff:leq:if2_0(n2407_0)) → gen_0':s:true:false:p:diff:leq:if2_0(n2407_0), rt ∈ Ω(1 + n24070)
a__leq(gen_0':s:true:false:p:diff:leq:if2_0(n1529_0), gen_0':s:true:false:p:diff:leq:if2_0(n1529_0)) → true, rt ∈ Ω(1 + n15290 + n152902)
Generator Equations:
gen_0':s:true:false:p:diff:leq:if2_0(0) ⇔ 0'
gen_0':s:true:false:p:diff:leq:if2_0(+(x, 1)) ⇔ s(gen_0':s:true:false:p:diff:leq:if2_0(x))
No more defined symbols left to analyse.
(22) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
a__leq(gen_0':s:true:false:p:diff:leq:if2_0(n1529_0), gen_0':s:true:false:p:diff:leq:if2_0(n1529_0)) → true, rt ∈ Ω(1 + n15290 + n152902)
(23) BOUNDS(n^2, INF)
(24) Obligation:
Innermost TRS:
Rules:
a__p(
0') →
0'a__p(
s(
X)) →
mark(
X)
a__leq(
0',
Y) →
truea__leq(
s(
X),
0') →
falsea__leq(
s(
X),
s(
Y)) →
a__leq(
mark(
X),
mark(
Y))
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
a__diff(
X,
Y) →
a__if(
a__leq(
mark(
X),
mark(
Y)),
0',
s(
diff(
p(
X),
Y)))
mark(
p(
X)) →
a__p(
mark(
X))
mark(
leq(
X1,
X2)) →
a__leq(
mark(
X1),
mark(
X2))
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
X2,
X3)
mark(
diff(
X1,
X2)) →
a__diff(
mark(
X1),
mark(
X2))
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
mark(
true) →
truemark(
false) →
falsea__p(
X) →
p(
X)
a__leq(
X1,
X2) →
leq(
X1,
X2)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
a__diff(
X1,
X2) →
diff(
X1,
X2)
Types:
a__p :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
0' :: 0':s:true:false:p:diff:leq:if
s :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
mark :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
a__leq :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
true :: 0':s:true:false:p:diff:leq:if
false :: 0':s:true:false:p:diff:leq:if
a__if :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
a__diff :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
diff :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
p :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
leq :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
if :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
hole_0':s:true:false:p:diff:leq:if1_0 :: 0':s:true:false:p:diff:leq:if
gen_0':s:true:false:p:diff:leq:if2_0 :: Nat → 0':s:true:false:p:diff:leq:if
Lemmas:
mark(gen_0':s:true:false:p:diff:leq:if2_0(n2407_0)) → gen_0':s:true:false:p:diff:leq:if2_0(n2407_0), rt ∈ Ω(1 + n24070)
a__leq(gen_0':s:true:false:p:diff:leq:if2_0(n1529_0), gen_0':s:true:false:p:diff:leq:if2_0(n1529_0)) → true, rt ∈ Ω(1 + n15290 + n152902)
Generator Equations:
gen_0':s:true:false:p:diff:leq:if2_0(0) ⇔ 0'
gen_0':s:true:false:p:diff:leq:if2_0(+(x, 1)) ⇔ s(gen_0':s:true:false:p:diff:leq:if2_0(x))
No more defined symbols left to analyse.
(25) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
a__leq(gen_0':s:true:false:p:diff:leq:if2_0(n1529_0), gen_0':s:true:false:p:diff:leq:if2_0(n1529_0)) → true, rt ∈ Ω(1 + n15290 + n152902)
(26) BOUNDS(n^2, INF)
(27) Obligation:
Innermost TRS:
Rules:
a__p(
0') →
0'a__p(
s(
X)) →
mark(
X)
a__leq(
0',
Y) →
truea__leq(
s(
X),
0') →
falsea__leq(
s(
X),
s(
Y)) →
a__leq(
mark(
X),
mark(
Y))
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
a__diff(
X,
Y) →
a__if(
a__leq(
mark(
X),
mark(
Y)),
0',
s(
diff(
p(
X),
Y)))
mark(
p(
X)) →
a__p(
mark(
X))
mark(
leq(
X1,
X2)) →
a__leq(
mark(
X1),
mark(
X2))
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
X2,
X3)
mark(
diff(
X1,
X2)) →
a__diff(
mark(
X1),
mark(
X2))
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
mark(
true) →
truemark(
false) →
falsea__p(
X) →
p(
X)
a__leq(
X1,
X2) →
leq(
X1,
X2)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
a__diff(
X1,
X2) →
diff(
X1,
X2)
Types:
a__p :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
0' :: 0':s:true:false:p:diff:leq:if
s :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
mark :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
a__leq :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
true :: 0':s:true:false:p:diff:leq:if
false :: 0':s:true:false:p:diff:leq:if
a__if :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
a__diff :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
diff :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
p :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
leq :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
if :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
hole_0':s:true:false:p:diff:leq:if1_0 :: 0':s:true:false:p:diff:leq:if
gen_0':s:true:false:p:diff:leq:if2_0 :: Nat → 0':s:true:false:p:diff:leq:if
Lemmas:
mark(gen_0':s:true:false:p:diff:leq:if2_0(n4_0)) → gen_0':s:true:false:p:diff:leq:if2_0(n4_0), rt ∈ Ω(1 + n40)
a__leq(gen_0':s:true:false:p:diff:leq:if2_0(n1529_0), gen_0':s:true:false:p:diff:leq:if2_0(n1529_0)) → true, rt ∈ Ω(1 + n15290 + n152902)
Generator Equations:
gen_0':s:true:false:p:diff:leq:if2_0(0) ⇔ 0'
gen_0':s:true:false:p:diff:leq:if2_0(+(x, 1)) ⇔ s(gen_0':s:true:false:p:diff:leq:if2_0(x))
No more defined symbols left to analyse.
(28) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
a__leq(gen_0':s:true:false:p:diff:leq:if2_0(n1529_0), gen_0':s:true:false:p:diff:leq:if2_0(n1529_0)) → true, rt ∈ Ω(1 + n15290 + n152902)
(29) BOUNDS(n^2, INF)
(30) Obligation:
Innermost TRS:
Rules:
a__p(
0') →
0'a__p(
s(
X)) →
mark(
X)
a__leq(
0',
Y) →
truea__leq(
s(
X),
0') →
falsea__leq(
s(
X),
s(
Y)) →
a__leq(
mark(
X),
mark(
Y))
a__if(
true,
X,
Y) →
mark(
X)
a__if(
false,
X,
Y) →
mark(
Y)
a__diff(
X,
Y) →
a__if(
a__leq(
mark(
X),
mark(
Y)),
0',
s(
diff(
p(
X),
Y)))
mark(
p(
X)) →
a__p(
mark(
X))
mark(
leq(
X1,
X2)) →
a__leq(
mark(
X1),
mark(
X2))
mark(
if(
X1,
X2,
X3)) →
a__if(
mark(
X1),
X2,
X3)
mark(
diff(
X1,
X2)) →
a__diff(
mark(
X1),
mark(
X2))
mark(
0') →
0'mark(
s(
X)) →
s(
mark(
X))
mark(
true) →
truemark(
false) →
falsea__p(
X) →
p(
X)
a__leq(
X1,
X2) →
leq(
X1,
X2)
a__if(
X1,
X2,
X3) →
if(
X1,
X2,
X3)
a__diff(
X1,
X2) →
diff(
X1,
X2)
Types:
a__p :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
0' :: 0':s:true:false:p:diff:leq:if
s :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
mark :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
a__leq :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
true :: 0':s:true:false:p:diff:leq:if
false :: 0':s:true:false:p:diff:leq:if
a__if :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
a__diff :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
diff :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
p :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
leq :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
if :: 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if → 0':s:true:false:p:diff:leq:if
hole_0':s:true:false:p:diff:leq:if1_0 :: 0':s:true:false:p:diff:leq:if
gen_0':s:true:false:p:diff:leq:if2_0 :: Nat → 0':s:true:false:p:diff:leq:if
Lemmas:
mark(gen_0':s:true:false:p:diff:leq:if2_0(n4_0)) → gen_0':s:true:false:p:diff:leq:if2_0(n4_0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s:true:false:p:diff:leq:if2_0(0) ⇔ 0'
gen_0':s:true:false:p:diff:leq:if2_0(+(x, 1)) ⇔ s(gen_0':s:true:false:p:diff:leq:if2_0(x))
No more defined symbols left to analyse.
(31) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_0':s:true:false:p:diff:leq:if2_0(n4_0)) → gen_0':s:true:false:p:diff:leq:if2_0(n4_0), rt ∈ Ω(1 + n40)
(32) BOUNDS(n^1, INF)